Great Experiences with PiP
(Proecss-in-Process)

Atsushi Hori

August 22, 2022



Preface

Motivation

I retired from my work from April 2022. Since then, I wrote this PiP tuto-
rial while I am maintaining PiP library (https://github.com/procinproc
including this document).

PiP provides a unique and new execution model. While I am maintaining
the PiP library, I have been facing many issues caused by the current Glibc
and Linux that are not aware of this new execution model. I hope the
new execution model which PiP provides would play an important role in
computer science in the future, and I will continue maintaining the PiP
library until then.

Thinking the fact of that Glibc and Linux changing much more fre-
quently than PiP because of man-power, I am not confident with adapting
PiP with the upcoming Glibc and Linux. So, I decided to write this docu-
ment to leave my ideas.

This is the reason why this can not only be a tutorial for using PiP, but
also a internal document.

Expected Readers

I tried to have example programs in this document as much as possible.
Most of them are written in C. The current PiP library are tested to run on
Linux (CentOS and Redhat, version 7 and 8). So readers must be familiar
with C programming and Linux.

PiP Versions
PiP Version 1 This is the very first release of PiP but it is obsolete now.
PiP Version 2 This is the stable version of PiP.

PiP Version 3 This is an experimental version of PiP implementing Bi-
Level Thread (BLT) and User-Level Process (ULP). Since this is not


https://github.com/procinproc

stable at the time of this writing, there will be no explanation on BLT
and ULP in this document.

Other Documents

This document will not explain all functions provided by the PiP library.
For this purpose, consult PiP reference manual (PDF file: https://github.
com/procinproc/PiP/blob/pip-2/doc/latex-inuse/libpip-manpages.pdf,
HTML document and/or man pages (HTML document and man pages will

be installed with PiP library).

Sample Programs

All sample programs were tested to run and all the output examples are
obtained by running the sample programs on a Docker environment running
on Mac OSX.

English

To my shame, supposedly many readers noticed already by this point, my
English is quite poor. I would appreciate it if some of you would help me to
improve the readability of this document (and other documents such as man
page). If this is the case, send me an e-mail (procinproc-info@googlegroups.com
or ahori@me.com) and I will give you the access right of the Github (https:
//github.com/procinproc).


https://github.com/procinproc/PiP/blob/pip-2/doc/latex-inuse/libpip-manpages.pdf
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Introduction

This is a book explaining Process-in-Process (PiP in short) library. This
somewhat strange name library is to provide a relatively new execution
model to have the best of two world; multi-process and multi-thread execu-
tion models.

It becomes quite common to have multiple CPU cores in a CPU die or
socket, parallel execution environment also becomes very crucial to exploit
the power of the many-core architecture. In the multi-process model, where
multiple processes run in parallel on a node, a process cannot directly access
data owned by the other processes, in spite of the fact accessing the same
physical memory device. In most cases, processes exchange information via
some form of communication. In my personal understanding, communica-
tion is accompanied with some form of data copying, regardless done by
software or hardware. Data copying consumes memory, time and power and
it must be avoided as much as possible. What if processes can directly ac-
cess, not by communication, data owned by the others? In the multi-thread
model, threads share the static variables and they must be protected from
race conditions if threads try to update their contents. What if each thread
has privatized static variable set?

This is my motivation to develop PiP. The name of Process-in-Process
may suggests, a process can create another processes inside of the address
space of the creating process. This sounds like the multi-thread execution
model, however, the name of process in PiP means that each created pro-
cesses have its own static variable set unlike the multi-thread model. Thus,
the created processes share the same address space can access data owned
by the others while maintaining the privatized static variables. This way
can avoid the data copying accompanied by communication.

Basically, multi-process model shares nothing, multi-thread model shares
everything, and everything is sharable in the execution model PiP provides.

With my regards to some predecessors, there are some other implemen-
tations providing this kind of execution model. However, PiP is quite unique
since it is implemented purely at the user-level, no need of new or patched
OS kernel, nor having new language processing systems.

I have been working on high performance computing (HPC) and very
little knowledge on the other fields. I can only imagine HPC applications.
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However, I believe that the easy-to-use nature of PiP can be applied to other
fields.
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Chapter 1

PiP Basics

Let me start describing the PiP basics for those who are not familiar with
PiP; 1) how to run a PiP program, 2) How to write a PiP program, and 3)
usage of PiP commands. The explanations in this chapter does not go into
details. For more details, refer to the Chapter 2 and/or the other documents
(man pages and PDF).

1.1 PiP Tasks

This section will describe how PiP tasks are created in a simple way and
how PiP tasks works in the different way from the process (using MPI) and
thread (using OpenMP) creations.

1.1.1 pipcc and pip-exec Commands

The first example is the well-known C program “hello world” listed below;

Listing 1.1: Hello World

#include <stdio.h>

int main() {
printf ( "Hello World\n" );
return O;

}

As you can see, this program is exactly the same with the normal C
program. If this program is compiled with the pipcc command, then this
program can run as a normal C program or as a PiP task by using the
pip-exec command.

Listing 1.2: Hello World - Compile and Execute

$ pipcc --silent hello.c -o hello
$ ./hello
Hello World
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$ pip-exec ./hello
Hello World
$

The pipcc command is written as a shell script to call a real C compiler
with appropriate options, such as -I, -L and so on. If the --silent option
is omitted, then you will see the options how pipcc script calls the backend
C/C++ compiler.

The pip-exec command in this example is to execute an executable file
as PiP tasks, not as a normal Linux process.

This example does not show how the hello program behaves differently
between the process and PiP task. We will discuss on this point in the next
section.

1.1.2 Comparing MPI, OpenMP and PiP

To explain the difference between the Linux process and PiP task, we slightly
modify the “hello world” program as below;

Listing 1.3: Hello World having a static variable

#include <stdio.h>

int x;

int main() {
printf ( "Hello World (&x:%p)\n", &x );
return O0;

}

Now the “Hello World” program has a static variable x and its address is
printed out with the “Hello World” message. The pip-exec command may
take an option to specify the number of PiP tasks to be created and executed
in parallel. In the following execution example, the number of three (3) is
specified. Additionally, the output of the same a.out execution using MPIL.
It should be noted that the “Hello World” program runs in parallel with
pip-exec and mpiexec.

Listing 1.4: Hello World with a static variable - Compile and Execute

$ pipcc --silent hello-var.c -o hello-var
$ ./hello-var

Hello World (&x:0x555555601030)
$ pip-exec -n 3 ./hello-var
Hello World (&x:0x7ff£f£f67d9030)
Hello World (&x:0x7ffff48db030)
Hello World (&x:0x7fffee92c030)
$ mpiexec -n 3 ./hello-var
Hello World (&x:0x555555601030)
Hello World (&x:0x555555601030)
Hello World (&x:0x555555601030)

13




The first execution of a.out shows that the variable x is located at
the address of 0x555555601030". This situation is the same with the MPI
execution’. However, the locations of the variable x executed as PiP tasks
are all different. This is because PiP tasks share the same address space but
MPT does not. Readers may notice that threads also share the same address
space and wonder the difference between PiP and OpenMP. The example
below is the OpenMP version of the “Hello World” with a static variable.

Listing 1.5: Hello World in OpenMP

#include <stdio.h>

int x;

int main() {
#pragma omp parallel
printf ( "Hello World (&x:%p)\n", &x );
return O;

3

The execution output of program 1.5 is shown below. Here, the addresses
of variable x are the same in OpenMP and MPI executions. However, the
addresses of the variable with PiP execution are different pairs.

Listing 1.6: Hello World in OpenMP, PiP and MPI - Compile and Execute

$ pipcc --silent -fopenmp hello-var-omp.c -o hello-var-omp
$ export OMP_NUM_THREADS=2

$ ./hello-var-omp

Hello World (&x:0x555555601038)

Hello World (&x:0x555555601038)

$ pip-exec -n 2 ./hello-var-omp

Hello World (&x
Hello World (&x
Hello World (&x
Hello World (&x
$ mpiexec -n 2
Hello World (&x
Hello World (&x
Hello World (&x
Hello World (&x
$

:0x7f£f£f£67d9038)
:0x7£f£f££67d9038)
:0x7fffefde3038)
:0x7fffefde3038)
./hello-var-omp

:0x555555601038)
:0x555555601038)
:0x555555601038)
:0x555555601038)

Figure 1.1 explains these differences. In OpenMP, the OpenMP threads
share the same address space and variable x is shared among threads. In
MPI, each MPI process has its own address space and two (2) threads run in

'For simplicity, we disabled ASLR (Address Space Layout Randomization) in this

example.

2MPICH implementation where each MPI rank has its own address space.
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each address space and share the variable in the same MPI process. In PiP,
all PiP tasks share the same address space, however, each PiP task has its
own variables and thread 0 and 1 share the variable in the same PiP task,
but not sharing the variables in the different PiP task (Figure 1.1).

OpenMP
Address Space

[ Thread 0 ] [ Thread 1 ]

MPI

Address Space 0 Address Space 1

[ Thread 0 ] [ Thread 1 ] [ Thread 0 ] [ Thread 1 ]

PiP
Address Space

PiP Task O PiP Task 1 @

[ Thread 0 ] [ Thread 1 j [ Thread 0 j [ Thread 1 j

Figure 1.1: Differences of OpenMP, MPI and PiP

In the conventional process model and thread model, static variables are
associated with an address space. Thus, each process has its own static vari-
ables and threads running on the same address space share the same static
variables. In the PiP execution model, each PiP task is guaranteed to have
its own static variable set, decoupling from the address space while main-
taining the address space sharing. This is called variable privatization.

This nature of PiP, privatized variables and sharing an address space,
makes it easy to exchange information among PiP tasks while maintaining
the independence of each PiP task execution. So far, it is shown that the
“Hello World” program can run as PiP tasks in parallel, but this program
is so simple and no information exchange among PiP tasks. In the next
section, we will show how information can be exchanged among PiP tasks.

1.1.3 Export and Import

Sharing an address space means that data owned by a PiP task can be
accessed if the address of the information to be exchanged is known. A PiP
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task can publish the address of the data to be shared and the other PiP
task(s) can get the published address.

Firstly, each PiP task has PIPID to distinguish from the others. A
PiP task can export an address so that the other PiP tasks sharing the
same address space can import the address by specifying the PIPID who
exported.

Listing 1.7: Export and Import (export-import)

#include <pip/pip.h>

#include <stdlib.h>

int x;

int main( int argc, char *xargv ) {
int pipid, *xp;
pip-get_pipid ( &pipid );

if ( pipid == 0 ) A
x = strtol( argv[1], NULL, 10 );;
pip_named_export ( &x, "export" );
} else {

pip-named_import( 0, (void**) &xp, "export" );
printf ( "%d: %d\n", pipid, *xp );
}

return O;

In this program, a PiP task having PIPID of zero (0) export the address
of the variable x by calling pip_-named_export() after setting the value of
argv[1]. The other PiP tasks import the exported address by the PiP task
0 by calling pip-named_import() function. Below is an execution result
of this program. As shown, the exported value by PiP task 0 can be seen
by the other PiP tasks.

Listing 1.8: Execution of Export and Import

pip-exec -n 4 ./export-import 1234
1234
1234
1234

pip-exec -n 4 ./export-import 18526
18526
18526
18526

B W NP A WN - &

The pip_-named_export() function publishes an address with the given
name. The pip_named_import() function blocking-waits until the named
address on the specified PiP task by PIPID. It is not allowed to export an
address having the same name twice or more to update the address, because
this leads to a race condition.
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Almost all functions provided by the PiP library return an integer value
as an error code. The return code of zero (0) means success. This error
code is the same with the ones defined by Linux. In the examples so far
and hereinafter, the returned code is not checked because of simplicity and
readability.

In MPI, it is not allowed to access the data owned by the other processes
in the same node. Communication is the only way allowed in MPI®. Basi-
cally, communication involves some form of data copying (done by software
or hardware). Data copying consumes time, power and memory.

1.2 Spawning PiP Tasks and Waiting Termina-
tions

The pip-exec command spawns PiP tasks. The process which spawns PiP
tasks is called (PiP) root process. The pip-exec process is a PiP root
process. PiP tasks spawned by the root process are mapped and executed
in the address space of the root. In this chapter, how to spawn PiP tasks
will be explained.

1.2.1 Spawning PiP tasks
Spawning a program as PiP tasks

Listing 1.9 is an example of a PiP root program. It spawns N PiP tasks,
where N is specified by the first parameter of the program. The pip_init()
function must be called to initialize the PiP library before calling any other
PiP functions, although there some exceptions to this. The pip_init() may
look strange because this function behaves differently depending on if it is
called from a PiP root or PiP task. The first argument is output returning
PIPID of the calling task. The second input arguments is to specify the
maximum number of spawning PiP tasks. This second argument becomes
output if this is called by a PiP task, returning the number specified by the
root. The pip_fin() function works as the opposite of pip_init(), finalizing
PiP library and freeing allocated resources. After calling pip_fin(), most
PiP library functions return an error code (EPERM).

The pip_spawn() function is called after then. The first and second
arguments are the same with the Linux’s execve () function; the first is to
specify the executable file to be executed and the second argument is to
specify the parameters executing the program. The third is to specify envi-
ronment variables. When it is NULL, then value of the Glibc global variable

3Strictly speaking, some MPI implementations based on the thread model may allow
this. Major MPI implementation, such MPICH, Open MPI, and many other MPI imple-
mentations provided by vendors are based on the process model and there is no way to
access data owned by the other MPI process.
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environ is taken. Th fourth argument is to specify the CPU core number
to bind the spawned PiP task and which CPU core. In this example, the
value of PIP_CPUCORE_ASIS means that the (CPU) core-bind should
be the same with the one when calling pip_spawn(). The fifth is an input
and output argument and you can specify PIPID or set to PIP_PIPID_
ANY so that PiP library can choose any. After calling pip_spawn(), the
argument returns the actual PIPID.

Listing 1.9: Spawn (spawn-root)

#include <pip/pip.h>
#include <stdlib.h>
int main( int argc, char x*xargv ) {
int pipid, ntasks, pipid_task, 1i;
ntasks = strtol( argv[1], NULL, 10 );
pip_init ( &pipid, &ntasks, NULL, 0 );
for( i=0; i<ntasks; i++ ) A
pipid_task = PIP PIPID_ANY;
pip_-spawn( argv[2], &argv[2], NULL,
PIP_ CPUCORE_ASIS, &pipid_task,
NULL, NULL, NULL );
pip_-wait ( pipid_task, NULL );
printf ( "PiP task (PIPID:%d) done\n",
pipid_task );
}
pip_fin () ;
return O;

Listing 1.10 is very similar to the “Hello World” program in the previous
section. The major difference here is calling the pip_init() function. Unlike
root, this function call is optional in the PiP task program. By calling
this, you can get PIPID and the number of maximum PiP tasks which are
specified by the root. Linsting 1.11 shows an example of the execution of
Listing 1.9 and 1.10.

Listing 1.10: Spawn (spawn-task)

#include <pip/pip.h>

int main( int argc, char *xargv ) {
int pipid, ntasks;
pip_init ( &pipid, &ntasks, NULL, 0 );
printf ( "\"%s\" from PIPID:%d/%d\n",

argv[1], pipid, ntasks );

pip_fin O);
return O0;

}

Listing 1.11: Spawn - Execution

18



$ ./spawn-root 4

"What’s up?"
"What’s up?"
"What’s up?"
"What’s up?"

from
from
from
from

PiP task (PIPID:0)
PiP task (PIPID:1)
PiP task (PIPID:2)
PiP task (PIPID:3)

$

PIPID

PIPID:
PIPID:

PIPID
done
done
done
done

:0/4
1/4
2/4
:3/4

./spawn-task "What’s up?"

Spawning myself

A program can be both or either PiP root and PiP task. Listing 1.12 shows
an example of combining the programs of Listing 1.9 and 1.10. We hope
you can understand the strange behavior of pip_init() function. The PiP
root process also acts like a PiP task. It has a special PIPID, PIP_PIPID_
ROOT. Listing 1.13 shows the example of this execution.

Listing 1.12: Spawn Myself (spawn-myself)

#include <pip/pip.h>
#include <stdlib.h>

int main( int argc,
ntasks,

int pipid,

ntasks = strtol( argv([1],

pip_-init ( &pipid,

if ( pipid

for( i=0;

&ntasks,

char x**xargv ) {
pipid_task, ij;

NULL, 10 );
NULL, 0 );

== PIP_PIPID ROOT ) {
/* PiP root */

i<ntasks;

pipid_task = 1ij;

pip_spawn( argv[0],

printf (

}
} else {

NULL,
pip-wait ( pipid_task,

i++

NULL,

pipid_task );

/* PiP task */

printf (

}
pip_fin () ;
return O;

“\"%S\"
argv [2],

) {

argv, NULL,
PIP_.CPUCORE_ASIS, &pipid_task,

NULL );
NULL );

"PiP task (PIPID:%d) donel\n",

from PIPID:%d/%d\n",
pipid,

ntasks );

Listing 1.13: Spawn Myself - Execution
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$ ./spawn-myself 4 "Learning PiP."
"Learning PiP." from PIPID:0/4
"Learning PiP." from PIPID:1/4
"Learning PiP." from PIPID:2/4
"Learning PiP." from PIPID:3/4

PiP task (PIPID:0) domne

PiP task (PIPID:1) done

PiP task (PIPID:2) done

PiP task (PIPID:3) done

$

Starting from other than main

PiP tasks start from the main () function in the examples so far. PiP allows
for PiP tasks to start user-defined function other than main (). In this case,
use the pip_task spawn() function instead of calling the pip_spawn()
function.

Listing 1.14: Starting from user-defined function (userfunc)

#include <pip/pip.h>
#include <stdlib.h>
int user_func( void x*arg ) {
char #*msg = (charx) arg;
int pipid, ntasks;
pip_get_pipid ( &pipid );
pip-get_ntasks ( &ntasks );
printf ( "USER-FUNC: \"%s\" from PIPID:%d/%d\n",
msg, pipid, ntasks );
return O0;

}

int main( int argc, char *xargv ) {
int pipid, ntasks, pipid_task, ij;
ntasks = strtol( argv[1], NULL, 10 );
pip_init ( &pipid, &ntasks, NULL, 0 );
if ( pipid == PIP_PIPID_ ROOT ) {
pip_spawn_program_t prog;
pip_spawn_from_func ( &prog,
argv [0], /* ezec file */
"user_func", /* func name */
(void*) argv[2], /* arg */
NULL, /* environ */
NULL );/* ezplained later */
for( i=0; i<ntasks; i++ ) {
pipid_task = 1i;
pip_task_spawn ( &prog, PIP.CPUCORE_ASIS, 0,
gpipid_task, NULL );
pip_-wait ( pipid_task, NULL );
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}
} else {
/* NEVER REACH HERE x*/
printf ( "MAIN: \"%s\" from PIPID:%d/%d\n",
argv[2], pipid, ntasks );

}
pip_fin () ;
return O;

}

Listing 1.14 is the program of this example. To decrease the number
of arguments to spawn a PiP task, the pip_spawn_program_t structure
is defined. This structure holds all information for spawning a program,
including path to executable file, function name, and so on. To hide the
details of the structure, pip_spawn_from func() function is also defined
to set these information. The user-defined function must have one argument
(void*) and return an integer value which is the same as the return value
from the main() function.

Listing 1.15: Starting from user-defined function - Execution

$ ./userfunc 4 "Calling user_func"

USER-FUNC: "Calling user_func" from PIPID:0/4
USER-FUNC: "Calling user_func" from PIPID:1/4
USER-FUNC: "Calling user_func" from PIPID:2/4
USER-FUNC: "Calling user_func" from PIPID:3/4
$

The pip_spawn() was firstly introduced (from version 1). After then,
I noticed users can start PiP tasks other than main, and the pip_task_
spawn() function was introduced (from version 2 or later). The pip_
spawn_program_t structure must be set by calling the pip_spawn_from_
main() function when starting from the main() function. Listing 1.16 is the
program rewritten version of Listing 1.12 by using the pip_task spawn()
and pip_spawn_from_main().

Listing 1.16: Starting from main function (mainfunc)

#include <pip/pip.h>
#include <stdlib.h>
int main( int argc, char x*xargv ) {
int pipid, ntasks, pipid_task, 1i;
ntasks = strtol( argv[1], NULL, 10 );
pip-init ( &pipid, &ntasks, NULL, 0 );
if ( pipid == PIP_PIPID ROOT ) {
pip_spawn_program_t prog;
pip_spawn_from_main ( &prog,

argv [0], /* exec file */
argv, /* argu */
NULL, /* environ */
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NULL );/* ezplained later */

for( i=0; i<ntasks; i++ ) {

pipid_task = 1ij;

pip-task_spawn( &prog, PIP.CPUCORE_ASIS, 0,

&pipid_task, NULL );

pip_wait ( pipid_task, NULL );

}
} else {
printf ( "MAIN: \"%s\" from PIPID:%d/%d\n",
argv [2], pipid, ntasks );

}
pip_fin () ;
return O;

}

Listing 1.17: Starting from main function - Execution

$ ./mainfunc 4 "Calling main"

MAIN: "Calling main" from PIPID:0/4
MAIN: "Calling main" from PIPID:1/4
MAIN: "Calling main" from PIPID:2/4
MAIN: "Calling main" from PIPID:3/4
$

1.2.2 Waiting for Terminations of PiP tasks

As readers may have already noticed, the pip_wait() is the function to wait
for terminations of the spawned PiP tasks. The pip_wait() function acts
like the Linux’s wait() function. In many cases, Linux’s wait () function
works with PiP tasks, but there is a certain case it does not. So, it is
recommended for users to use pip-wait() function.

The argument of the pip_wait() is the pointer to an integer variable, the
same with the Linux’s wait () call. The returned integer can be examined
by using the Linux’s WIFEXITED, WIFSIGNALED, WEXITSTATUS, WIFSIGNALED,
and WTERMISIG macros.

Listing 1.18: Waiting for specified PiP task terminations (wait)

#include <pip/pip.h>
#include <stdlib.h>
int main( int argc, char *xargv ) {
int pipid, ntasks, pipid_task, i, exitval = O0;
ntasks = strtol( argv[1], NULL, 10 );
pip_init ( &pipid, &ntasks, NULL, 0 );
if ( pipid == PIP_PIPID ROOT ) {
for( i=0; i<ntasks; i++ ) {
int status;
pipid_task = ij;
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pip_spawn( argv[0], argv, NULL,
PIP_CPUCORE_ASIS, &pipid_task,
NULL, NULL, NULL );
pip-wait ( pipid_task, &status );
printf ( "PiP task (PIPID:%d) done: %d\n",
pipid_task, WEXITSTATUS(status) );

}
} else {
exitval = pipid;
}
pip_fin O);
return exitval;

}

Listing 1.19: Waiting for specified PiP task terminations - Execution

$ ./wait 4

PiP task (PIPID:0) done:
PiP task (PIPID:1) done:
PiP task (PIPID:2) done:
PiP task (PIPID:3) done:
$

W N = O

pip_wait() waits for the PiP task termination specified by PIPID. pip_
wait_any() function can wait for any PiP tasks and PIPID and exit status
are returned when terminated (See Listing 1.20 and 1.21). pip_trywait()
and pip_trywait_any() are the non-blocking versions of pip_wait() and
pip_wait_any(), respectively.

Listing 1.20: Waiting for any PiP task terminations (waitany)

#include <pip/pip.h>
#include <stdlib.h>
int main( int argc, char *xargv ) {
int pipid, ntasks, pipid_task, i, exitval = O0;
ntasks = strtol( argv[1], NULL, 10 );
pip_init ( &pipid, &ntasks, NULL, 0 );
if ( pipid == PIP_PIPID ROOT ) {
int status;
for( i=0; i<ntasks; i++ ) {
pipid_task = 1i;
pip_spawn( argv[0], argv, NULL,
PIP_ CPUCORE_ASIS, &pipid_task,
NULL, NULL, NULL );
}
for( i=0; i<ntasks; i++ ) {
pip_wait_any ( &pipid_task, &status );
printf ( "PiP task (PIPID:%d) done: %d\n",
pipid_task, WEXITSTATUS (status) );
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} else {
exitval = pipid;
}
pip_fin O);
return exitval;

3

Listing 1.21: Waiting for any PiP task terminations - Execution

$ ./waitany 4

PiP task (PIPID:0) done:
PiP task (PIPID:1) done:
PiP task (PIPID:2) done:
PiP task (PIPID:3) done:
$

w N = O

1.2.3 Terminating PiP tasks

PiP tasks and root can terminate their executions by calling pip_exit()
function. This function acts like the Linux’s exit () function. As described
above, it is recommended to use pip_exit() instead of exit (), because the
Linux’s exit () function works in most cases, however, there is a case it
does not. Listing 1.22 and 1.23 show the example showing how pip_exit()
works.

Listing 1.22: PiP Task Termination function (exit)

#include <pip/pip.h>
#include <stdlib.h>
int main( int argc, char *xxargv ) {
int pipid, ntasks, pipid_task, i, exitval = O0;
ntasks = strtol( argv[1], NULL, 10 );
pip-init ( &pipid, &ntasks, NULL, 0 );
if ( pipid == PIP_PIPID ROOT ) {
for( i=0; i<ntasks; i++ ) {
int status;
pipid_task = 1ij;
pip_-spawn( argv[0], argv, NULL,
PIP_CPUCORE_ASIS, &pipid_task,
NULL, NULL, NULL );
pip_wait ( pipid_task, &status );
printf ( "PiP task (PIPID:%d) done: %d\n",
pipid_task, WEXITSTATUS(status) );
}
pip_exit ( 100 );
/* NEVER REACH HERE x*/
} else {
exitval = pipid * 10;
pip_exit ( exitval );
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/* NEVER REACH HERE x/

}

}
Listing 1.23: PiP Task Termination - Execution

$ ./exit 4; echo $7
PiP task (PIPID:0) dome: O
PiP task (PIPID:1) done: 10
PiP task (PIPID:2) done: 20
PiP task (PIPID:3) done: 30
100
$

1.3 Timing Synchronization among PiP Tasks

This section will explain about the timing synchronization among PiP tasks.

1.3.1 Barrier Synchronization

Currently, there is only one synchronization method is supported by the
PiP library, it is barrier synchronization. The API of PiP’s barrier syn-
chronization is borrowed from the one found in the PThread library. There
are three functions in PiP, pip_barrier_init(), pip_barrier_wait(), and
pip_barrier _fin(), corresponding to pthread_barreir_init(), pthread_
barrier_wait() and pthread_barrier_destroy(), respectively.

Listing 1.24: Barrier Synchronization (barrier)

#include <pip/pip.h>
#include <stdlib.h>
pip-barrier_t barr;

int main( int argc,
int pipid,
pip_barrier_t xbarrp

ntasks

pip-init ( &pipid,

ntasks,

= strtol( argv[1i],

&ntasks,

pip_barrier_init ( barrp,

for(

}
for (

printf (

i=0; i<ntasks;
pipid_task
pip_-spawn ( argv [0],

i=0; i<ntasks;
pip-wait_any ( &pipid_task,
"PiP task (PIPID:%d) done\n",

= i;

i++ ) {

char x*xargv ) {
pipid_task,
= &barr;

i,

NULL, 10 );
(void**) &barrp, 0 );
if ( pipid == PIP_PIPID ROOT ) {

ntasks );

argv,

NULL,

PIP_CPUCORE_ASIS, &pipid_task,
NULL );

NULL ,

NULL ,

i++ ) {
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}
pip_barrier_fin ( barrp );

} else {
if ( argv[2] == NULL ) {
pip_barrier_wait ( barrp );
}
printf ( "PIPID:%d %f [S]\n", pipid, pip_gettime() );
}
return O;

3

In Listing 1.24, the pip_init() function is given a new non-NULL value
to the third argument. This is another form of exporting a pointer from the
root to spawnd PiP tasks. In this example, the address of the pip_barrier_t
static variable is passed to children so that the children can synchronize by
calling pip_barrier_wait().

To clarify the effect of the barrier synchronization, the synchronization
takes place only when the second parameter of the program execution is not
given, and then the return values of pip_gettime() are shown by PiP tasks.
The pip_gettime() returns the current value of gettimeofday() in double
format with the unit of seconds.

The example of running of this program is shown in Listing 1.25. In the
first run, the barrier synchronization does not take place and large variance
can be seen on the gettimeofday() values. In the second run, where the
barrier synchronization takes place, and smaller variance can be seen.

Listing 1.25: Barrier Synchronization - Execution

$ ./barrier 4 NOBARRIER
PIPID:0 1661152530.820478 [S]
PIPID:1 1661152530.847696 [S]
PIPID:2 1661152530.878638 [S]
PIPID:3 1661152530.902075 [S]
PiP task (PIPID:0) done

PiP task (PIPID:1) done

PiP task (PIPID:2) done

PiP task (PIPID:3) done

$ ./barrier 4

PIPID:3 1661152531.178360 [S]
PIPID:0 1661152531.178426 [S]
PIPID:1 1661152531.178457 [S]
PIPID:2 1661152531.179018 [S]
PiP task (PIPID:3) done

PiP task (PIPID:0) done

PiP task (PIPID:1) done

PiP task (PIPID:2) done

$
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1.3.2 Using PThread Synchronization

Users can utilize the synchronization functions on PiP tasks provided by the
PThread library. This is simply because PiP tasks share the same address
space, just like threads.

1.3.3 pthread_barrier

The same barrier synchronization can also be implemented by using the
pthread_barrier functions. Listing 1.26 is the program simply replacing
pip_barrier functions with the pthread_barrier functions.

Listing 1.26: Pthread Barrier (pthread-barrier)

#include <pip/pip.h>
#include <stdlib.h>
#include <pthread.h>
pthread_barrier_t barr;
int main( int argc, char *xargv ) {
int pipid, ntasks, pipid_task, 1ij;
pthread_barrier_t *barrp = &barr;
ntasks = strtol( argv[1], NULL, 10 );
pip_init ( &pipid, &ntasks, (voidx**) &barrp, 0 );
if ( pipid == PIP_PIPID ROOT ) {
pthread_barrier_init( barrp, NULL, ntasks );
for( i=0; i<ntasks; i++ ) {
pipid_task = 1ij;
pip_spawn( argv[0], argv, NULL,
PIP_ CPUCORE_ASIS, &pipid_task,
NULL, NULL, NULL );
}
for( i=0; i<ntasks; i++ ) {
pip_wait_any ( &pipid_task, NULL );
printf ( "PiP task (PIPID:%d) done\n", pipid_task );

}
pthread_barrier_destroy( barrp );
} else {
if ( argv[2] == NULL ) {
pthread_barrier_wait ( barrp );
}

printf ( "PIPID:%d %f [S]I\n", pipid, pip-gettime() );
}
return O0;

3

Listing 1.27: Pthread Barrier - Execution

$ ./pthread-barrier 4 NOBARRIER
PIPID:0 1661152533.381032 [S]
PIPID:1 1661152533.410988 [S]
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PIPID:2 1661152533.451032 [S]
PIPID:3 1661152533.566188 [S]
PiP task (PIPID:0) done

PiP task (PIPID:1) done

PiP task (PIPID:2) done

PiP task (PIPID:3) done

$ ./pthread-barrier 4

PIPID:3 1661152534.127914 [S]
PIPID:1 1661152534.127852 [S]
PIPID:0 1661152534.127925 [S]
PIPID:2 1661152534.128041 [S]
PiP task (PIPID:1) done

PiP task (PIPID:3) done

PiP task (PIPID:0) done

PiP task (PIPID:2) done

$

1.3.4 pthread_mutex

Similarly, pthread_mutex also works with PiP.

Listing 1.28: Pthread Mutex (pthread-mutex)

#include <pip/pip.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

#define NITERS (1000)

typedef struct sync_tasks {
pthread_barrier_t barr;
pthread_mutex_t mutex;
int count ;

} sync_t;

sync_t sync_tasks;

int lock;

void increment( sync_t *syncp ) {
int tmp;
if ( lock ) pthread_mutex_lock( &syncp->mutex );
tmp = syncp->count;
usleep( 10 );
syncp->count = tmp + 1;

if ( lock ) pthread_mutex_unlock( &syncp->mutex );
}
int main( int argc, char x*xargv ) {

int pipid, ntasks, 1i;

sync_t *syncp,;

pip-get_pipid ( &pipid );

pip_get_ntasks( &ntasks );

lock = ( argc == 1 );
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if ( pipid == 0 ) {
syncp = &sync_tasks;
pthread_barrier_init ( &syncp->barr, NULL, ntasks );
pthread_mutex_init ( &syncp->mutex, NULL );

syncp->count = 0;
pip_-named_export ( syncp, "sync" );
} else {

pip-named_import( 0, (void**) &syncp, "sync" );
}
pthread_barrier_wait ( &syncp->barr );
for( i=0; i<NITERS; i++ ) increment( syncp );
pthread_barrier_wait ( &syncp->barr );
if ( pipid == 0 ) {

printf ( "count=%d (%d*%d)\n", syncp->count,

ntasks, NITERS );

}

return O;

Listing 1.29: Pthread Mutex - Execution

$ pip-exec -n 10 ./pthread-mutex
count=10000 (10%1000)

$ pip-exec -n 10 ./pthread-mutex NOLOCK
count=992 (10%1000)

$

1.4 PiP Commands

This section will describe on the PiP commands in the PiP package. Some
of them are already shown but explained very briefly. In this section, details
of PiP commands will be explained.

1.4.1 pip-man

This command shows the PiP man pages. Although this is just a simple
shell script to run Linux’s man command with the MAN_PATH setting to the
PiP man pages (if installed properly), users need not take care about the
man path by using this command.

1.4.2 pipcc and pipfc

As already described in Section 1.1.1, pipcc is the compiler script for com-
piling PiP programs for C and C++ and pipfc is for Fortran.

The --which option will show you the pass of the actual back-end com-
piler. Or, users can specify the back-end compiler by setting the environment
variable CC for pipcc or FC for pipfc.
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By default, pipcc and pipfc compile program to produce the code
which can run as a PiP root process and/or a PiP task. Users may specify
--piproot option for PiP root only program, or ——piptask option for PiP
task only program. Indeed, any PiP program compiled as PiP tasks can run
as a PiP root too. Thus, —-piptask option is equivalent to --pipboth (to
be both root and task) option.

The actual compile options to be passed to the back-end compiler are
shown by specifying the -—cflags option and the link options are shown by
the --1flags option. The --cflags or --1flags disables the actual com-
piling and/or linking process. All options and parameters not for pipcc and
those Linux commands cannot run as PiP programs. Additionally, any shell
script (shebang) cannot run as a PiP program. As shown in Listing 1.30,
the 1s command is implemented a shell script indeed.

Listing 1.30: pip-check - Execution Example

$ pip-check /usr/bin/ps

/usr/bin/ps : not a PiP program

$ pip-check /usr/bin/ls

/usr/bin/ls : not an ELF file

$ cat /usr/bin/1ls

#!/usr/bin/coreutils --coreutils-prog-shebang=1s
$ pipcc --silent pip.c -o pip

$ pip-check ./pip

./pip : Root&Task

$ pipcc --silent --piptask pip.c -o pip-task
$ pip-check ./pip-task

./pip-task : Root&Task

$ pipcc --silent --piproot pip.c -o pip-root
$ pip-check ./pip-root

./pip-root : Root

$

The pip-check program does not guarantee a program to run as a PiP
program, even if it tells so.

1.4.3 pip-exec

The pip-exec command is to invoke PiP tasks derived from one program in
the examples so far. However, pip-exec can invoke multiple programs and
all PiP tasks derived from those programs share the same address space. To
do this, programs are separated by colon (:) (Listing 1.31).

Listing 1.31: pip-exec - Execution Example

$ cat prog.c

#include <pip/pip.h>

int main( int argc, char *xargv ) {
int pipid;
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pip_get_pipid ( &pipid );
printf ( "This is %s [%d]l\n", argv([0], pipid );
return O;

pipcc --silent prog.c -o a.out
cp a.out b.out

cp a.out c.out

pip-exec -n 2 ./a.out : -n 3 ./b.out : -n 1 ./c.out
This is ./a.out [0]

This is ./a.out [1]

This is ./b.out [2]

This is ./b.out [3]

This is ./b.out [4]

This is ./c.out [5]

$

“h H H LY

1.4.4 pips

pips is the command to output the list of currently running PiP roots and
PiP tasks in the similar way of what the Linux’s ps command does. Here
is the example, running three (3) pip-exec each of which execute a, b, or ¢
PiP tasks.

$ pips

PID TID TT TIME PIP COMMAND
18741 18741 pts/0 00:00:00 RT pip-exec
18742 18742 pts/0 00:00:00 RG pip-exec
18743 18743 pts/0 00:00:00 RL pip-exec
18741 18744 pts/0 00:00:00 OT a

18745 18745 pts/0 00:00:00 0G b

18746 18746 pts/0 00:00:00 OL ¢

18747 18747 pts/0 00:00:00 1L ¢

18741 18748 pts/0 00:00:00 1T a

18749 18749 pts/0 00:00:00 1G b

18741 18750 pts/0 00:00:00 2T a

18751 18751 pts/0 00:00:00 2G b

18741 18752 pts/0 00:00:00 3T a

As you see, this output looks very similar to the on of the ps command.
The unfamiliar column titled PIP represents if this is a PiP root or PiP task
(first character. 'R’ means root, the other numerical digit '0-9’ means PiP
task. The second character represents PiP execution mode, explained in
Section 2.3).

This pips command has many options. Refer PiP man page (1.4.1) for
more details.

1.4.5 pip-gdb
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pip-gdb is PiP-aware version of gdb (GNU debugger). PiP tasks are im-
plemented as GDB’s inferiors. Here is the example of PiP-gdb debugging
session.

(pip-gdb) info inferiors

Num Description Executable

* 4 process 1904 (pip 2) /somewhere/pip-task-2
3 process 1903 (pip 1) /somewhere/pip-task-1
2 process 1902 (pip 0) /somewhere/pip-task-0
1 process 1897 (pip root) /somewhere/pip-root

1.4.6 pip-mode and printpipmode

The pip-mode command is to set PiP execution mode and the printpip-
mode outputs the current execution mode (refer to Section 2.3 and 3.1.4).
1.4.7 1libpip.so

The PiP library libpip.so can also run as a program, showing the informa-
tion how the library was build and installed.

Listing 1.32: 1ibpip.so - Execution Example

$ ${PIPLIBDIR}/libpip.so

Package: Process-in-Processs

Version: 2.4.1

License: the 2-clause simplified BSD License

Build 0S: Linux 5.10.104-1linuxkit #1 SMP Thu Mar 17 17:08:06 UTC 2022
Build CC: gcc (GCC) 8.5.0 20210514 (Red Hat 8.5.0-4)
Prefix dir: /home/ahori/git/pip-2/install

PiP-glibc: /home/ahori/pip-glibc/install/lib

ld-linux: /home/ahori/pip-glibc/install/1lib/1d-2.28.s0
Commit Hash: 2485d3£923302ef03432bc52a5ddc3c4b0398fca
Debug build: no

URL: https://github.com/procinproc/PiP/

mailto: procinproc-info@googlegroups.com

$

1.5 Summary

PiP root and PiP task

e PiP programs must be compiled with the pipcc (for C and C++) or
pipfc (for Fortran) command.

e PiP programs can run as PiP tasks by using the pip-exec command.

e PiP programs can run as non-PiP tasks by invoking them as normal
programs.

e Unlike the conventional multi-thread model (i.e. OpenMP), static
variables in a PiP program are privatized and each PiP task has its
own set of the static variables.
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e Unlike the conventional multi-process model (i.e. MPI), PiP tasks may
share the same address space and PiP tasks can access data owned by
the other PiP tasks.

PiP API

e Most PiP functions return error code defined in Linux.
e Every PiP task has a unique PIPID per address space.

e PiP root must initialize PiP library by calling pip_init(). While child
PiP task may or may not call the initialization function.

e PiP root can spawn PiP tasks by calling the pip_spawn() or pip_
task_spawn() function.

e To obtain the address for accessing data of the other PiP tasks, use
the pip_named_export() and pip_named_import() functions.

e The pip_named _export() and pip_named_import() can be used
to synchronize tasks. pip_barrier_wait() can also be used for tasks
to synchronize.

e The pip_exit() function terminates the calling PiP task and PiP root.

e PiP root can wait for the termination of a spawned PiP task, by calling
one of the pip_wait() function family.

1.6 Myths on PiP

I cannot see the difference between shared memory and what
PiP does

The shared memory model enables to access the data owned by the other
process. While the POSIX share memory model allows to share only newly
allocated memory region, while another shared memory mode provided by
XPMEM* allows for the other process to access any memory region. Thus
both look the same in terms of accessing the data owned by the other.
However, the mechanisms of both memory models are quite different.
To have a shared memory, one must call a system call to ask OS kernel to
have the shared memory. This kind of system calls, modifying the memory
mapping, are quite expensive. On the other hand, PiP tasks are mapped
in one memory address, and a PiP task can access any data owned by
the others once the addresses of the data are known, without calling any
expensive system calls. In terms of how memory regions are mapped, 1

‘https://github.com/hpc/xpmem
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name the way what PiP does shared address space model, as oppose to
the shared memory model. It should be noted that the shared address space
model includes the shared memory model.

If the data to be shared are scattered in an address space and hard to
pack in a memory region, or the shared data are being dynamically allocated,
then the shared address space model has the advantage.

Sharing an address with multiple programs can be a severe secu-
rity issue

PiP allows to run programs sharing the same address space. The most
important point here is to make information exchange among programs easy
and efficient. If there is no information exchange among them, there is no
reason to run them with the PiP environment.

Basically, communicating programs share the same fate. Even a most
simple case where two programs are connected by using the Linux/Unix
pipe, one of the programs dies, the other programs also dies by receiving
the SIGPIPE signal. Communicating programs agree with others when to
communicate and how to communicate. The PiP case is no exception.

Sharing address space makes debugging difficult

It is true if one of the processes in a PiP environment destroy the data
owned by the other(s) may lead to a catastrophic result. If this is done
maliciously, then this cannot be avoided (see also above). If the destruction
is triggered by a software bug, then this might be harder-to-debug than that
of multi-process model. There are two points here; 1) the higher possibility
of destructing of actual data, not accessing invalid memory region (SIGSEGV),
and 2) there are multiple execution entities.

The ASLR can be some help for the former point. If ASLR is enabled,
then the phenomenons of the bug can vary time to time. The situation of
the latter point is almost the same with the multi-thread case.

Anyway, I have no experiences for having bugs based on this situation
up until now.

My program does not have any static variables and I do not need

PiP.

You may write programs without having any static variables. However, the
functions implemented in Glibc have many static variables. Your runtime
system may use some of the Glibc functions. So, in general, it is very hard
to write programs not having any static variables.
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PiP may consume more memory than the other execution models

The answer is yes, but not that much. Listing 2.4 shows how memory seg-
ments of running PiP tasks are mapped in one address space. For example,
Glibe (1ibc-2.28.s0), Listing 2.5 shows only the memory segments related
to Glibc, loaded three (3) times onto memory in this case, running one PiP
root and two PiP tasks each of which requires Glibc. Each segment set is
a memory map of 1ibc-2.28.s0. All three segment sets are mapped from
the same file, and the amount of consumed memory is the same with having
only one set.

In the multi-process model, Each address space of a process has only one
libs-2.28.s0 segment set, but another process has also the same memory
mapping of Glibc. Thus, roughly speaking, the amount of memory required
to run PiP tasks is almost the same with the one of running multiple pro-
cesses. However, in the multi-thread model, there is only one variable seg-
ment shared among threads, regardless to the number of threads. And the
amount of memory for running PiP tasks is larger than that of running
multiple threads.

There must be some hidden overhead for running PiP programs

So far, it is know that there is one overhead which is larger than the multi-
process model. It is address space modification system calls, such as mmap ()
and brk(). This is because any modification of an address space must be
locked inside of the OS kernel and this lock contention results in larger
overhead. This situation is the same with the multi-thread model and the
overhead of mmap() is larger than the multi-process model but almost the
same with the multi-thread model. There is no other known additional
overhead in PiP so far.
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Chapter 2

PiP Advanced

So far, the basic of PiP is described, In this chapter, more detailed function-
alities provides by PiP will be explained.

2.1 Rationale

The prosedure to spawn a PiP task is (more detailed procedure can be found
at Section 3.1.1);

1. create a new name space by calling the Linux’s dlmopen() function,

2. create a PiP task process (or thread) by calling the Linux’s clone ()
system call, and

3. jump into the starting function of a user program.

The dlmopen () function can create a new name space, unlike dlopen().
Here, the name space is the global symbol names (functions and global
variables) to be resolved at loading a program. By creating a new name
space, functions and variables can be privatized from the other PiP tasks.

The order of calling the dlmopen() and clone() is very important.
At first, T tried to call them in the order of calling clone() followed by
dlmopen (), because this way seemed to be quite natural, however, this does
not work at all. This the reason of that only PiP root can spawn PiP tasks
and wait for the terminations of PiP tasks.

In some cases (or, in most cases before CentOS/Redhat 8), the loaded
address of a program is fixed by default. If this is the case, PiP cannot
load multiple programs in the same address space. To enable this, the PiP
executables must be compiled as PIE (Position Independent Executable) so
that the programs can be loaded at any arbitrary address. All programs to
be PiP tasks must be compiled as PIE, i.e., must be compiled with pipcc
or pipfc with the --piptask option (or nothing to use the default). Note
that PiP root program may not be PIE.
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By running the loaded program having a new name space with another
thread, PiP task can be created. Unfortunately, things are not that simple.
There are many issues coming from Glibc. The next section will describe
these issues.

2.2 Issuesrelated to Linux Kernel, Glibc and Tools

This section will explain about the issues when implementing PiP.

2.2.1 Loading a Program

Before going into the details about the Glibc issues when implementing
PiP, readers should understand how a program is loaded into memory. This
subsection describes only about the program loading procedure of Linux,
apart from PiP implementation.

When the Linux’s execve() system call to run a program, the Linux
kernel open and read the executable file, searching the ELF section named
“.interp.”

Listing 2.1: .interp Section of the ps command

$ readelf -a /usr/bin/ps | grep interpreter
[Requesting program interpreter: /1ib64/1d-1linux-x86-64.s0.2]

$

Listing 2.1 shows the value of the . interp section, /1ib64/1d-1inux-x86-64.s0.2.
The Linux kernel invokes the loader specified by the .interp section and
asks the loader to load a program specified by the execve() parameter.
Then the loader load the program and additionally load and link the shared
libraries required to run the program. Once everything is loaded, the loader
jumps into the starting function defined in Glibc to initialize Glibc and
finally user-defined main () function is called.

The program loader, often simply called 1d-linux.so, is loaded once
per address space and kept in memory until the end of the process (see also
Listing 2.4). This is responsible for any loading process by resolving the
external symbol references. The Glibc functions defined in the 1ibdl.so
(-1d1), such as dlopen(), dlmopen(), dlsym() and so on, are just API and
their functional bodies exist in this program loader.

2.2.2 Glibc

PiP provides a new execution model which cannot be categorized into neither
the process model nor the thread model. In this new model, although its
name is not yet given, tasks share the same address space like the thread
model, but maintaining the variable privatization like the process model.
This execution model is novel and not yet recognized by most of the tool

37



chains provided by Linux and others. Indeed, the most of the time to develop
PiP was devoted to find niches in Glibc.

PiP Task is Unable to Spawn PiP Task

As described in Section 2.1, the order of calling dlmopen() and clone()
is important. This restriction also means that a PiP task cannot spawn a
PiP task as a child of spawning PiP task because this breaks the restriction.
Thus, the current PiP implementation inhibits for a PiP task to call pip_
spawn().

Recycling PiP Tasks

As far as I tested, the resources; name space, loaded PIE program, and
shared libraries required by the PIE program, are not released by calling
the dlclose(). I believe this issue can be fixed by patching the Gilbc,
however, I decided no to do so. Thus, once a PiP task is created, then the
PIPID of the task will not be recycled even the PiP task terminates. The
reason of my decision will also be discussed in Section 3.2.1.

Number of name spaces

The number of names spaces which the dlmopen() can create is hard-coded
as 16. Considering PiP tasks run in parallel and the number of CPU cores
nowadays, this number of 16 is apparently too small. The PiP package
provides PiP-glibc where the number of name spaces is increased, up to 300
PiP tasks'.

The name space table resides in the 1d-1linux.so and this means that
the .interp ELF section of PiP programs must be changed so that the
program is loaded by the new 1d-1linux.so. This can be done by specifying
--dynamic-linker option of the GNU linker and the pipcc and pipfc do
this.

The name space table resides at the top of a structure in 1d-linux.so.
Some Glibc functions refer to the members in this structure directly. This
causes another problem. Once the size of the name space table is changed,
the addresses of the other members in the same structure are also changes.
As described, only one 1d-1linux.so can be loaded in an address space. As
a result, all PiP programs sharing the same address must be linked with the
same Glibc.

'Once I asked Glibc development members to increae the size, but they did not accept
my opinion. Refer https://sourceware.org/bugzilla/show_bug.cgi?id=23978
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PiP-gdb

The 1d-1linux.so embeds a tiny information for debugging into the loaded
program. Unfortunately, I found that this code fragment resides on the pass
calling the 1d-1inux.so from the top (by the kernel), not on the pass called
from dlopen() and dlmopen()?. The patched PiP-glibc fixed this issue.
Thus, the pip-gdb command (Section 1.4.5) can only work with the PiP
programs linked with the patched PiP-glibc.

Global lock

Most programs are linked with Glibc and PiP programs are no exception.
PiP allows to run multiple PiP programs in the same address space. This
means that each PiP task has its own Glibc. And the simultaneous calls of
some Glibc functions may not work because of a race condition.

To avoid this condition, PiP library provides the functions, pip_glibc_
lock() and pip_glibc_unlock(), to serialize the Gilbc function calls. The
following Glibc functions are wrapped by PiP library to introduce the lock
and users do not have to care the race.

Table 2.1: Glibc functions wrapped by PiP library

dlsym dlopen dlmopen
dlinfo dlclose dlerror
dladdr dlvsym getaddrinfo

freeaddrinfo gai_strerror pthread_create

pthread_exit

malloc free calloc
realloc memalign posix_memalign

The functions pthread_exit() and below in this table have another
reason to have function wrappers. The wrapping reason of pthread_exit ()
will be explained in the Section 2.3 and the reason of wrapping malloc
routines will be explained in Section 2.7.

These listed functions may not be complete. There can be a case where
some other Glibc functions may suffer from the race condition. This problem
can be avoided by introducing the above locking functions. This lock can
be used recursively and users can avoid deadlock situation easily.

Constructors and Destructors

The constructors and destructors are used in C++ programs. Constructors
and destructors are list of functions. Generally, constructor functions are

2T guess the loaded code by using dlopen() or dlmopen() cannot be debugged.
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called just before the program begins, and destructors functions are called
when the program is about to exit.

In PiP, the behavior of the constructors and destructors is somewhat
different. To explain this, I should start explaining how the constructors
and destructors are implemented in general. The constructor functions are
listed in the .init_array section of an ELF file. The destructor func-
tions are listed in the .fini_array section. Constructors are called when
1d-linux.so finishes loading and linking objects. Destructors are called
when dlclose() is called.

Now back to PiP. Again, constructors are called inside of the call of
dlmopen() when spawning a PiP task. The dlmopen() is called by the PiP
root process. Thus, the constructors of a program are called by the root.
Here is the example;

Listing 2.2: Constructors and Destructors

#include <pip/pip.h>
#include <iostream>
#include <unistd.h>
#include <sys/types.h>
char *pipidstr( void ) {
static char idstr [32];
int pipid;
if ( pip_get_pipid( &pipid ) !'= 0 ) {
sprintf ( idstr, "[R] PID:" );
} else {
sprintf ( idstr, "[%d] PID:", pipid );
}
return idstr;
}
static int x = 0;
class Hello {
public:
Hello(void ) {
std::cout << pipidstr() << getpid() << " Hello" <<
std::endl;
}
“Hello(void ) A{
std::cout << pipidstr() << getpid() << " Bye" <<
std::endl;
}
};
Hello hello;
int main() {
std::cout << pipidstr() << getpid() << " MAIN " <<
std::endl;
return O;

3

40



Listing 2.2 is a C++ program having a constructor and destructor. When
the constructor of this program is called, the PiP library is not yet initial-
ized, and the pip_get_pipid() return an error (EPERM). So, the function
pipidstr () takes care of this situation. Listing 2.3 shows the executoin
example of this program. As shown, the PIDs output by the constructors
are not the same with the ones of the PiP tasks.

Listing 2.3: Constructors and Destructors - Execution

$ ./hello

[R] PID:37019 Hello
[R] PID:37019 MAIN
[R] PID:37019 Bye

$ pip-exec -n 2 ./hello
[R] PID:37020 Hello
[0] PID:37021 MAIN
[0] PID:37021 Bye
[R] PID:37020 Hello
[1] PID:37022 MAIN
[1] PID:37022 Bye

$

LD_PRELOAD

LD_PRELOAD only works with PiP root, not PiP tasks. This is because
dlmopen () simply ignores the LD_PRELOAD environment setting.

Shared Objects

Some shared objects, such as GCC related runtime libraries, must be located
in the same directory where the 1d-linux.so does. The piplnlibs shell
script found in the PiP-glibc package makes symbolic links of the shared
objects in the /1ib64 directories to meet with the restriction.

Loading Program by dlmopen()

The Glibc in CentOS/RedHat 8 (and possibly newer ones) does not allow
to load a program by the dlmopen() function®. The pip-unpie program is
to cheat this Glibc restriction. This program is automatically executed by
the pipcc or pipfc when creating a PiP executable, and not to be invoked
by users directly.

3Refer https://sourceware.org/bugzilla/show_bug.cgi?id=11754#c15. I tested
this situation but I cannot find this problem with PiP.
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2.2.3 Glibc RPATH Setting

When using Spack?, it automatically adds RPATHs for every program and
PiP is no exception. A problem arises when to install the PiP-glibc by using
Spack. When the PiP-glibc is built by using Spack, Spack adds the RPATH
setting to the compiled Glibe, but it is not allowed in CentOS/Redhat 8 to
load Glibc with the RPATH setting. To avoid this, PiP-gilbc has a program
(annul_rpatha) to unset the RPATH setting of the compiled Glibc.

2.2.4 Linux

Heap Segment

There is another issue which comes from Linux kernel, not from Glibc.
Before explaining this issue, let us start from the how an address space
is composed.

Listing 2.4: A Memory Map Example

00400000-00402000 r-xp 00000000 00:71 77130812 /PiP/bin/pip-exec
00601000-00602000 r--p 00001000 00:71 77130812 /PiP/bin/pip-exec
00602000-00603000 rw-p 00002000 00:71 77130812 /PiP/bin/pip-exec

00603000-00624000 rw-p 00000000 00:00 O [heap]

7£f£f£fe8000000-7£fffe8021000 rw-p 00000000 00:00 O
7£f£f£fe8021000-7£f£ffec000000 ---p 00000000 00:00 O
7fffeefff000-7£f£f£fef000000 ---p 00000000 00:00 O
7£f£f£fef000000-7££££0000000 rwxp 00000000 00:00 O
7££££0000000-7££££0021000 rw-p 00000000 00:00 O
7££££0021000-7££££4000000 ---p 00000000 00:00 O
7£f£f£46da000-7£f£f£f£f46db000 r-xp 00000000 00:71 79448679 /PiP/example/a.out
7T£f££46db000-7££f££f48da000 ---p 00001000 00:71 79448679 /PiP/example/a.out

7£f££48da000-7£f£f£f£f48db000 r--p 00000000 00:71 79448679 /PiP/example/a.out
7ff££48db000-7£ff£f£f48dc000 rw-p 00001000 00:71 79448679 /PiP/example/a.out

7T££f£f£48dc000-7£f£f£f£f48f6000 r-xp 00000000 00:71 77130790 /PiP/1ib/1libpip.so.0
7T£ff£f48£f6000-7f£fff4af6000 ---p 0001a000 00:71 77130790 /PiP/1ib/1libpip.so.0
7Tffff4af6000-7£f£f£ff4af7000 r--p 00012000 00:71 77130790 /PiP/1ib/1libpip.so.0
7T££f££f4af7000-7£f£f£ff4af8000 rw-p 0001b000 00:71 77130790 /PiP/1ib/1libpip.so.0
7T££f££f4af8000-7f£fff4b£f8000 rw-p 00000000 00:00 O

7Tf£f££f4b£8000-7ffff4da4000 r-xp 00000000 fe:01 3445390 /1ib64/1ibc-2.28.s0
7Tf£f££f4da4000-7ffff4fa4000 ---p 001ac000 fe:01 3445390 /1ib64/1ibc-2.28.s0
Tff£f£f4fa4000-7ffff4fa8000 r--p 001ac000 fe:01 3445390 /1ib64/1ibc-2.28.s0
7£ffff4fa8000-7ffff4faa000 rw-p 001b0000 fe:01 3445390 /1ib64/1ibc-2.28.s0
7£ffff4f2a000-7ffff4fae000 rw-p 00000000 00:00 O

7£ffff4f2e000-7£f£f£f£f4£fc5000 r-xp 00000000 fe:01 3446072 /1ib64/libpthread -2.28.so
7T£f£f£f4£fc5000-7£f£f£f£f51c4000 ---p 00017000 fe:01 3446072 /1ib64/libpthread -2.28.so
7££f£f£51c4000-7£f£f£f£f51c5000 r--p 00016000 fe:01 3446072 /1ib64/1libpthread -2.28.so
7£f£f£51c5000-7£f£ff£f51c6000 rw-p 00017000 fe:01 3446072 /1ib64/1libpthread -2.28.so
7T£ff£f51c6000-7£f£ff£f51ca000 rw-p 00000000 00:00 O

7T££f£f£51ca000-7£f£f£f£f51cc000 r-xp 00000000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
7T£f£f£51cc000-7£f£f£f£53cc000 ---p 00002000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
7T££f£f£53cc000-7£f£f£f£53cd000 r--p 00002000 fe:01 3445775 /1ib64/1ibd1-2.28.so0
7T££f£f£53cd000-7f£ff£f53ce000 rw-p 00003000 fe:01 3445775 /1ib64/1ibd1-2.28.so0
7T£fff£53ce000-7f£f£f£f53d6000 r-xp 00000000 00:71 77130791 /PiP/1ib/1ldpip.so.0
7T£ff£53d6000-7f£fff55d5000 ---p 00008000 00:71 77130791 /PiP/1ib/1ldpip.so.

0
7Tfff£55d5000-7ffff55d6000 r--p 00007000 00:71 77130791 /PiP/1ib/1ldpip.so.0
7££f££55d6000-7£f£f£f£55d7000 rw-p 00008000 00:71 77130791 /PiP/1ib/1ldpip.so.0
7££££55d47000-7£f£f££55d8000 ---p 00000000 00:00 O

7£f£f££55d8000-7£f£f£f£65d8000 rwxp 00000000 00:00 O

7££f££65d8000-7£ff£f£65d9000 r-xp 00000000 00:71 79448679 /PiP/example/a.out
7££££65d9000-7£f£f£f£f67d8000 ---p 00001000 00:71 79448679 /PiP/example/a.out
7££f££67d8000-7£ff£f£f67d9000 r--p 00000000 00:71 79448679 /PiP/example/a.out
7££f££67d9000-7£ff£f£f67da000 rw-p 00001000 00:71 79448679 /PiP/example/a.out

7£f££67da000-7£f£f£f£f67£4000 r-xp 00000000 00:71 77130790 /PiP/1lib/libpip.so.0
7T£f£f£67£4000-7£f£f£f£69f4000 ---p 0001a000 00:71 77130790 /PiP/1lib/libpip.so.0
7T£f£f£69£f4000-7£f£ff£f69f5000 r--p 00012000 00:71 77130790 /PiP/1lib/libpip.so.0
7T£f£f£69£5000-7£f£ff£f69f6000 rw-p 0001b000 00:71 77130790 /PiP/1ib/1libpip.so.0
7T£f£f£69£6000-7ffff6ba2000 r-xp 00000000 fe:01 3445390 /1ib64/1ibc-2.28.s0
7£ffff6ba2000-7ffff6da2000 ---p 001ac000 fe:01 3445390 /1ib64/1ibc-2.28.s0
7T£fff£6d4a2000-7ffff6da6000 r--p 001ac000 fe:01 3445390 /1ib64/1ibc-2.28.s0

4PIPKW{pip-unpie}program
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PIPKW{pip-unpie} program

7£fff£6da6000-7ffff6da8000 rw-p 001b0000 fe:01 3445390 /1ib64/1ibc-2.28.so0

7£fff£6d4a8000-7ffff6dac000 rw-p 00000000 00:00 O

7£fff£6dac000-7f£fff6dc3000 r-xp 00000000 fe:01 3446072 /1ib64/1libpthread -2.28.so
7T£ff£6dc3000-7f£fff6£c2000 ---p 00017000 fe:01 3446072 /1ib64/1libpthread -2.28.so
TE££f££6£c2000-7f£fff6£c3000 r--p 00016000 fe:01 3446072 /1ib64/1libpthread -2.28.so
TE££f££f6£fc3000-7ffff6£c4000 rw-p 00017000 fe:01 3446072 /1ib64/1libpthread -2.28.so
Tff££f6£fc4000-7ffff6£c8000 rw-p 00000000 00:00 O

Tff£f£f6£fc8000-7ffff6fcal000 r-xp 00000000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
Tffff6fca000-7ffff71ca000 ---p 00002000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
7££f£f£f71ca000-7£f£f££71cb000 r--p 00002000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
7T££££71cb000-7££f£f£f71cc000 rw-p 00003000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
7T££f£f£71cc000-7££f££71d4000 r-xp 00000000 00:71 77130791 /PiP/1lib/1ldpip.so.0
7T££££71d4000-7££f££73d3000 ---p 00008000 00:71 77130791 /PiP/1lib/1ldpip.so.0

7T££££73d3000-7££f££73d4000 r--p 00007000 00:71 77130791 /PiP/1lib/1ldpip.so.0
7T££££73d4000-7££f£f£73d5000 rw-p 00008000 00:71 77130791 /PiP/1lib/1ldpip.so.0

7T££££73d5000-7£f£f£f£7581000 r-xp 00000000 fe:01 3445390 /1ib64/1ibc-2.28.s0
7T££f£f£7581000-7£f£f£f£f7781000 ---p 001ac000 fe:01 3445390 /1ib64/1ibc-2.28.so0
T££££7781000-7£f£f£f£f7785000 r--p 001ac000 fe:01 3445390 /1ib64/1ibc-2.28.s0
T££££7785000-7£f£f£f£7787000 rw-p 001b0000 fe:01 3445390 /1ib64/1ibc-2.28.s0
T££££7787000-7£f£££778b000 rw-p 00000000 00:00 O

TE££££778b000-7£f£££f7722000 r-xp 00000000 fe:01 3446072 /1ib64/1libpthread -2.28.so
T£££f£772a2000-7£f£££f7921000 ---p 00017000 fe:01 3446072 /1ib64/1libpthread -2.28.so
7T££££79a1000-7£f£f£f£79a2000 r--p 00016000 fe:01 3446072 /1ib64/1libpthread -2.28.so
7T££££7922000-7fff£f79a3000 rw-p 00017000 fe:01 3446072 /1ib64/1libpthread -2.28.so
7££££7923000-7£f£f££79a7000 rw-p 00000000 00:00 O

7££££79a7000-7£f£f££7929000 r-xp 00000000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
7££££7929000-7£ff£f£f7ba9000 ---p 00002000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
7££f££f7ba9000-7fff£f7baa000 r--p 00002000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
7£ffff7baa000-7£fff£f7bab000 rw-p 00003000 fe:01 3445775 /1ib64/1ibd1-2.28.s0
7££f££7bab000-7£f£f£f£f7bc5000 r-xp 00000000 00:71 77130790 /PiP/1lib/libpip.so.0
7T£f££f7bc5000-7££f£f£7dc5000 ---p 0001a000 00:71 77130790 /PiP/1lib/libpip.so.0

7T££f££7dc5000-7£f£f£f£f7dc6000 r--p 00012000 00:71 77130790 /PiP/1lib/libpip.so.0
7T££f££7dc6000-7££££7dc7000 rw-p 0001b000 00:71 77130790 /PiP/1ib/1libpip.so.0

7ff££7dc7000-7ffff7dea000 r-xp 00000000 fe:01 3446237 /1ib64/1d-2.28.s0
7ff£f£7ed0000-7ffff7fe4000 rw-p 00000000 00:00 O

Tffff7£fe4000-7£f£ff£f7£e8000 r--p 00000000 00:00 O [vvar]
Tffff7£e8000-7ffff7fea000 r-xp 00000000 00:00 O [vdso]
Tffff7fea000-7ffff7feb000 r--p 00023000 fe:01 3446237 /1ib64/1d-2.28.s0
TE£f£f7feb000-7£f££f£f7££f£f000 rw-p 00024000 fe:01 3446237 /1ib64/1d-2.28.s0
Tffffffde000-7f£ffff££ff000 rwxp 00000000 00:00 O [stack]

fEffffffFf600000-fffffffFFf601000 r-xp 00000000 00:00 O [vsyscalll

Listing 2.4 shows an example of the output of doing “cat /proc/(PID)/maps.”
Here, “pip-exec -n 2 ./a.out” was executed, resulting one pip-exec pro-
cess and two ./a.out tasks. The file, /proc/(PID)/maps, lists all memory
segments in an address space of the process (PID) usually. A loaded shared
object has consecutive three or four segments; executable, gap (not accessi-
ble, if any), constants and data. The rightmost column of a line indicates the
mmap () ed filename, the second from the left column indicates the permission
of the memory segment. 'r’ is readable, 'w’ is writable, ’x’ is executable and
'p’ is private (copy-on-write). There are also some special segments whose
filename is in a pair of square brackets; [stack], [heap], and so on. These
are created by the Linux kernel for special purposes as their names suggest.
The segments having no filename are created by the mmap () system call.

Remember, this is the address space of running one PiP root and two
PiP tasks, resulting to have all the segments of the three tasks. Note that
the all three tasks have exactly the same /proc/(PID)/maps content, and
there are three sets of a shared library and only one set of 1d-linux.so
(1d-2.28.s0) can be seen in Listing 2.4.

Usually, the heap segment, mainly used by malloc (), exists only one per
address space. As shown in this example, there is only one heap segment,
meaning the heap segment is shared by three tasks (one for root and two
for PiP tasks).
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The size of the heap segment can be increased or decreased by calling
the brk () system call. Most cases, there are two calls of brk() to allocate
or deallocate heap memory, one for obtaining the current heap end address
and another for setting the new heap end address. This is exactly what the
Glibc’s sbrk() does. Apparently, this API is not thread-safe at all, and
thus, the shared heap memory cannot be used safely by PiP tasks.

Fortunately, the malloc routines in Glibc is designed to check if there are
two or more name spaces and if so they do not use the brk () system call, use
mmap () instead. So, the Glibc malloc routines can work with PiP without
any problem. However, if some other routines use the brk() system call (or
sbrk() Glibc function), for example, replacing the Glibc malloc routines
with some other malloc implementation, then this shared heap may result
in a problem.

Core File

Suppose that we have a catastrophic situation and all PiP tasks and their
root process dump core files of their own. On the current Linux, a core file
is associated with a process (including threads inside of it). Thus, each PiP
task and the root may produce core, resulting to have many core files. Here,
the address space of them are shared and the created core files and all of
them are almost the same excepting the CPU state.

Let me explain this with an example. Suppose that we have PiP task
A and B running on the same address space of the root P, and an error
happens resulting all P, A, and B produce core files. There can be a small
time difference when to produce each core file. When the first core file, of A
for instance, is being created, the other P and B are still running and the
memory of the shared address space can be altered by those running tasks.
gdb, however, assumes that a core file is a consistent snapshot of memory and
CPU state. The above PiP situation breaks this assumption. If B produces
another core file, may or may not be caused by the error on A, the same
situation can happen. Thus, the pip-gdb command (Section 1.4.5) does
not support for debugging from a core file. To solve this issue, PiP-aware
OS kernel to have the consistent core files is needed.

2.2.5 Tools

As described, PiP sets a special combination of the clone() flags. As a
result of this, some tools do not work. Here is the list of tools which are
known to work or not at the time of this writing®.

5 - .
ltrace depends on its version
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Table 2.2: Compatibility of Tools

Compatible | Incompatible
strace valgrind
ltrace

2.3 Execution Mode

PiP library is designed to run on Linux. As described in Section 2.1, it
heavily depends on the dlmopen() and clone(). Especially, the clone() is
called with a rare combination of CLONE flags. There are many Linux vari-
ants and some of them do not support such a CLONE flag combination (for
example, McKernel). To run PiP on such environment, there are two PiP
execution modes, one for calling clone() with the special flag combination
and another for calling pthread_create() (using the normal flag combina-
tion) to spawn a PiP task. The former is called process mode and latter
is called pthread mode. In either mode, the PiP’s basic nature, sharing
address space and variable privatization are preserved.

2.3.1 Differences Between Two Modes

The difference of the PiP execution mode ends up with the difference of
the clone () flag combination. Unlike the pthread mode, the CLONE flags
of CLONE_FS, CLONE_FILES, CLONE_SIGHAND and CLONE_THREAD are reset,
CLONE_VM and CLONE_SYSVSEM is set.

Table 2.3: Differences between two modes

H Process Mode | Pthread Mode

Address Space Sharing yes yes
Variable Privatization yes yes
File Descriptors (FDs) not shared shared

Table 2.3 shows the major differences between the two modes. There are
many other differences, though, PiP library provides mode-agnostic func-
tions so that users can write PiP programs without care of the mode differ-
ences.

There are also predicate functions for users to know the current mode
listed below;

The meaning of pip_is_threaded() and pip_is_shared fd() are the
same in the current implementation. The reason to have those functions is
that there might be the case where those two may have different meanings.
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Table 2.4: Mode-Agnostic Functions

Mode-Agnostic Process Mode Pthread Mode note
pip-exit() exit () pthread_exit () termination
pip-wait() wait () pthread_join() wait termination
pip_kill() kill() pthread_kill() send signal

pip_sigmask() sigprocmask() | pthread_sigmask() || signal mask

pip_signal_wait() sigwait() sigwait() wait signal
pip_yield() sched_yield() | pthread_yield() yield

Table 2.5: Execution Mode Predicates

Function name note
pip_is_threaded() | if pthread mode
pip-is_shared_fd() | if FDs are shared

2.3.2 How to Specify Execution Mode

The execution mode can be specified when to call pip_init() and/or setting
the PIP_MODE environment variable at run-time. Below is the function
prototype of the pip_init(). The first three arguments are already described
up until now.

int pip_-init( int *pipidp, [IN/OUT]
int *ntasksp, [IN/OUT]
void #**root_expp, [IN/OUT]
int opts ); [IN]

The possible values of the last opts argument are one of PIP_MODE_
PROCESS, PIP MODE _THREAD, oring the both, and zero. The
value of zero is equal to PIP_MODE_PROCESS | PIP_MODE_PTHREAD. As for the
PIP_MODE environment, it can be a string of “process” or “pthread.”
When the opts value is zero or the value of oring the both, then the value
of PIP_MODE environment variable is checked. If the environment is not
set, then the PiP library chooses an appropriate one. The opts value and
the environment value cannot not contradict with each other.

2.4 Spawning Tasks - Advanced

In this section, other features, not described so far, of pip_spawn() and pip_
task_spawn() will be explained. For convenience, the function prototypes
of these functions are shown below;

int pip-task_spawn( pip_spawn_program_t *progp, [IN]
uint32_t coreno, [IN]
uint32_t opts, [IN]
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int *pipidp, [IN/OUT]
pip-spawn_hook_t xhookp ); [IN]

int pip_-spawn( char *filename, [IN]
char x*xargv, [IN]
char **envv, [IN]
int coreno, [IN]
int *pipidp, [IN/OUT]
pip_spawnhook_t before, [IN]
pip_spawnhook_t after, [IN]
void *hookarg ); [IN]

The first argument of pip_task_spawn() function is already described
in Section 1.2.1. This is structure is to pack the first three arguments of

pip_spawn().

2.4.1 Start Function

As already shown in Listing 1.2.1, these PiP spawn functions eventually
jumps into the start function (main() or user specified one). To enable this,
PiP needs to know the address of the start function. One of the following
two conditions must be met here;

e the starting function is defined as a global symbol.

e if the starting function is defined as a local symbol then the executable
file must not be stripped.

As for the main () function, the pipcc and pipfc compile programs with
the -rdynamic option to make the symbol global. As for the user-defined
local symbol, PiP library read the executable file to spawn and tries to find
the starting function by using the ELF information. Unfortunately, the
local symbol information is lost if stripped, and PiP fails to find the starting
function.

2.4.2 Stack Size

The stack size of spawned PiP tasks can be set by the PIP_STACKSIZE
environment variable. Like the OMP_STACKSIZE environment defined by
OpenMP, its value may be suffixed by “T,” “G,” “M,” “K,” or “B” repre-
senting the TiB, GiB, MiB, KiB, orByte unit, respectively. If no suffix is
present, KiB is assumed. Unless PIP_STACKSIZE is specified, the en-
vironment variable KMP_STACKSIZE, GOMP_STACKSIZE, or OMP_STACKSIZE is
also effective with the priority in this order. The KMP_STACKSIZE, GOMP_
STACKSIZE, and OMP_STACKSIZE also affects the size of OpenMP threads,
however, PIP_STACKSIZE only affects the stack size of PiP tasks.
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2.4.3 CPU Core Binding

The coreno argument is to bind the spawned PiP task to the specified
CPU core. By default, this is the Nth core number. If users want to
specify the absolute core number, then the absolute core number should
be ORed with the PIP_CPUCORE_ABS flag. If the core numbers are
consecutive, specifying this flag may not affect the core number specification.
This difference is only seen on some CPU architectures with non-contiguous
core numbers (e.g., Fujitsu A64FX). The coreno argument can be PIP_
CPUCORE_ASIS to bind to the same CPU cores as of the root process
calling the spawn function.

2.4.4 File Descriptors and Spawn Hooks

In the process mode, file descriptors of the root process are duplicated
and passed to the spawned child in the same way of what fork() does. In
the pthread mode, files descriptors are simply shared among PiP root and
PiP tasks.

If the close-on-exec flag of a file descriptor owned by the root process
is set in process mode, then the file descriptor is closed after calling the
before hook described above (if any), and then jump into the start function.

The last argument of pip_task spawn() is the structure packing the
last three arguments of pip_spawn(). The pip_spawn_hook_t structure
can be set by calling pip_spawn_hook() function. Here is the prototype;

void pip_spawn_hook( pip_spawn_hook_t *hook, [0UT]
pip_spawnhook_t before, [IN]
pip_spawnhook_t after, [IN]
void *hookarg ) { [IN]
typedef int (*pip_spawnhook_t)( voidx* );

The before function in this structure is called when a PiP task is created
and before calling the start function (e.g., main()). And the after function
is called when the PiP task is about to terminate. Both functions are called
with the argument specified by the hookarg to pass any arbitrary data.

In general, a new process is created by calling fork() and execve()
in Linux/Unix. Here, file descriptors owned by parent process are passed
to the created child. In many cases, those file descriptors are closed or
duplicated and some other settings take place between the calls of fork()
and execve (). In PiP, however, the task is created by only one function and
there is no chance to do the same settings with the ones of using fork&exec.
These hook functions are provided for this purpose. Here is an example of
these hook functions;

Listing 2.5: Before and After Hooks
#define _GNU_SOURCE
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#include <pip/pip.h>
#include <stdlib.h>
#include <unistd.h>
#define FD_TASK (10)
int before_hook( void *argp ) {
int *fdp = (intx*) argp;
printf ( "PID:%d Before Hook: fd=%d\n", getpid(), *fdp );
fflush( stdout );
dup2( 1, *fdp );
return O;
}
int after_hook( void xargp ) {
int *fdp = (int*) argp;
printf ( "PID:%d After Hook: fd=%d\n", getpid(), *fdp );
fflush( stdout );
close( *fdp );
return O;
}
int main( int argc, char *xargv ) {
int pipid, ntasks, pipid_task, ij;
int arg = FD_TASK;
ntasks = strtol( argv[1], NULL, 10 );
pip_init ( &pipid, &ntasks, NULL, 0 );
if ( pipid == PIP_PIPID_ROOT ) {
pip_-spawn_program_t prog;
pip_spawn_hook_t hooks;
pip_spawn_from_main( &prog, argv[0], argv,
NULL, NULL );
pip_-spawn_hook ( &hooks,
before_hook,
after_hook,
karg );
printf( "PID:%d MAIN\n", getpid() );
fflush( stdout );
for( i=0; i<ntasks; i++ ) {
pipid_task = 1ij;
pip_-task_spawn( &prog, PIP_.CPUCORE_ASIS,
0, &pipid_task, &hooks );
pip_wait ( pipid_task, NULL );
}
} else {
char *msg;
asprintf ( &msg, "Hello from PIPID:%d\n", pipid );
write( FD_TASK, msg, strlen( msg ) );
free( msg );
}
pip_fin O;
return O;

}
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In this example, FD1 of the root process is duplicated to FD10 by the
before hook. Then the spawned task write a message via FD10. Finally,
the FD10 is closed by the after hook (Listing 2.3). Note that the execution
of those hook functions are called by the root.

Listing 2.6: Before and After Hooks - Execution

$ ./hook 2

PID:37231 MAIN

PID:37232 Before Hook: fd=10
Hello from PIPID:O

PID:37232 After Hook: fd=10
PID:37233 Before Hook: fd=10
Hello from PIPID:1

PID:37233 After Hook: fd=10
$

2.5 Execution Context

Before explaining the rest of the arguments, readers should know about the
execution context under PiP. The execution context can be defined as the
state of CPU, i.e., contents of hardware registers. On PiP, this definition may
not be enough. Let us have an example. Suppose that the same program
runs as two PiP tasks and this program has a function foo(). By passing
the function pointer, by using the pip_named _export() and pip_named_
import(), one of the PiP task can call the function of the other PiP task.
Additionally, this function accesses a static variable, say var. If task A calls
function foo of task B, then the called function accesses the variable owned
by task B, not A (Listing 2.7 and 2.8).

Listing 2.7: Function Call of Another Task

#include <pip/pip.h>
int var;
int foo( void ) { returmn var; %}
int main( int argc, char *xargv ) {
int pipid, ntasks, prev;
int (xfuncp) (void);
pip_get_pipid ( &pipid );
pip_get_ntasks ( &ntasks );
prev = ( pipid == 0 ) ? ntasks - 1 : pipid - 1;
var = pipid * 100;
pip-named_export( foo, "foo@%d", pipid );
pip-named_import ( prev, (void#**) &funcp, "foo@%d", prev );
printf ( "PIPID:%d foo(%d)=%d\n", pipid, prev, funcp() );
return O;
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In this example program, sorry, this goes off the side road, pip_named_
export() and pip_-named_import() are called differently than before.
The final argument of these functions is actually a format string, just like
printf (), followed by argument(s) needed by the format.

Listing 2.8: Function Call of Another Task - Execution

$ pip-exec -n 4 ./context
PIPID:1 foo0(0)=0

PIPID:2 foo(1)=100
PIPID:3 foo(2)=200
PIPID:0 foo(3)=300
$

Thus, the execution context in PiP environment might be different from
the one in common sense and some times its behavior becomes very subtle.
In the PiP library, this happens quite often and makes debugging difficult.

Further, the association of static variables and function addresses heavily
depends on the CPU architecture and tool chain. The above description is
true on x86_64and AArch64, however, not true on x86_32. Thus, it is not
recommended do this.

Rationale

Some readers may wonder why this happens. Let me explain this. This
trick is hidden in the address map. Listing 2.5 shows a part of address
map running three tasks, focusing on the Glibc (/1ib64/1ibc-2.28.s0)
segments.

7££f£f£53£8000-7£fff£f5524000 r-xp 00000000 fe:01 3049686 /1ib64/1ibc-2.28.s0
7£f£f£5524000-7£ff£f£f5724000 ---p 001ac000 fe:01 3049686 /1ib64/1ibc-2.28.s0
7T£f£f£5724000-7£f£f£f£f57a8000 r--p 001ac000 fe:01 3049686 /1ib64/1ibc-2.28.s0
7T£f£f£57a8000-7£fff£f572a000 rw-p 001b0000 fe:01 3049686 /1ib64/1ibc-2.28.s0
7T£f£f£69£6000-7ffff6ba2000 r-xp 00000000 fe:01 3049686 /1ib64/1ibc-2.28.so0
7£ffff6ba2000-7ffff6da2000 ---p 001ac000 fe:01 3049686 /1ib64/1ibc-2.28.so0
7£ff£6d4a2000-7ffff6da6000 r--p 001ac000 fe:01 3049686 /1ib64/1ibc-2.28.s0
7£ffff6d4a6000-7ffff6da8000 rw-p 001b0000 fe:01 3049686 /1ib64/1ibc-2.28.s0
7TE££££73d5000-7f£f£f£7581000 r-xp 00000000 fe:01 3049686 /1ib64/1ibc-2.28.s0
7T££££7581000-7£f£ff£f7781000 ---p 001ac000 fe:01 3049686 /1ib64/1ibc-2.28.s0
TE£££7781000-7ff£f£f7785000 r--p 001ac000 fe:01 3049686 /1ib64/1ibc-2.28.s0

7T££££7785000-7£f£f££7787000 rw-p 001b0000 fe:01 3049686 /1ib64/1ibc-2.28.s0

There are three sets of Glibc segments. The static variables are located
on the last (readable and writable) segment of each set. A static variable
is accessed by an instruction using the offset from the instruction (program
counter relative addressing mode) to the variable. Thus, the gap size be-
tween the code segment (top of the set) and variable segment (bottom of
the set) is important to make all offsets constant and thus all gap sizes must
be the same. In this way, variables and instructions are associated in PIE®,

5This is not the case if not compiled as PIE.
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and PIE programs and shared objects compiled with the PIC option can be
loaded at any locations.

Unfortunately, this addressing mode is not supported by all CPU archi-
tectures’. For example, x86_32does not. On this architecture, one general
purpose register is sacrificed to point the variable segment, resulting per-
formance degradation by loosing one general purpose register. And the
program shown in Listing 2.7 exhibits differently.

2.6 Debugging Support

Some environment variable settings may help debugging PiP programs.

2.6.1 PIP_STOP_ON_START

This environment variable is to stop (by sending SIGSTOP to spawned PiP
task just before calling the before hook (Section 2.4.4), or jumping to the
starting function if before hook is not given. The value of this environment
must meet the following format;

PIP_STOP_START=[<script-file>]@<PIPID>

The optional (script) is a shell script to be executed on the suspension,
and (PIPID) is the PIPID to be suspended. If (PIPID) is -1, then all
spawned PiP tasks will be stopped. The (script) is invoked with three
parameters; PID and PIPID of the stopped PiP task, followed by a path
to the program of the task. Do not forget to set the executable bit on this
(script-file) file.

Listing 2.9: Stop-on-start Script Example

#!/bin/sh

PID=$§1

PIPID=$2

PROG=‘basename $3°

echo "###" $0 "### "${PROG} ${PID} ${PIPID}
pips -f ${PID} # strace, ltrace, pip-gdb,
kill -CONT ${PID}

Listing 2.9 shows an example of the script for the PIP_STOP_ON_
START. Here, pips command is invoked instead of some debugging com-
mand®. Note that the target task is already stopped by delivering the
SIGSTOP signal. Somehow you have to explicitly deliver the SIGCONT sig-
nal to the task if you want to resume the task. Listing 2.10 shows the result
of PIP_STOP_ON_START execution with this script file.

"Listing 2.8 is obtained by running the program on an x86_64CPU.

8 All examples are executed on a Docker environment but ptrace (and other commands
using ptrace) was unable to run in this example even withthe --cap-add=SYS_PTRACE
Docker option (I confirmed gdb worked). So pips was used instead in this example.
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Listing 2.10: Stop-on-start Script Example - Execution

$ pipcc --silent hello.c -o hello
$ echo $PIP_STOP_ON_START
onstart.cmd@2
$ pip-exec -n 4 ./hello
Hello World
Hello World
PiP-INFO[36954(R):R] PiP task[2] (PID=36957) is SIGSTOPed and executing ’onstart.cmd’ script
### onstart.cmd ### hello 36957 2
Hello World
File "/home/ahori/git/pip-2/install/bin/pips", line 228
from __future__ import print_function

SyntaxError: from __future__ imports must occur at the beginning of the file
Hello World
$

2.6.2 PIP_GDB_SIGNALS

This environment variable PIP_GDB_SIGNALS is to set the signals to
trigger some actions by specifying the PIP_SHOW_MAPS and PIP_
SHOW _PIPS, followed by the PiP-gdb invocation. The value of this en-
vironment is as follows;

PIP_.GDB_SIGNALS=[ <SIGNAME> ] { "+"|["-" <SIGNAME> }

The possible (SIGNAME) vale are listed below;

Table 2.6: Possible Signal Names for PIP_GDB_SIGNALS

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGABRT
SIGFPE
SIGINT
SIGSEGV
SIGPIPE
SIGUSR1
SIGUSR2
ALL

Here, ‘“ALL’’ means all signals list in this table. Each signal name
in this table can be concatenated by using the plus (+) and/or minus (-)
symbols. For example, “ALL-SIGUSR1” indicates the all signals excluding
SIGUSR1. “SIGUSR1+SIGUSR2+SIGINT” represents SIGUSR1, SIGUSR2 and
SIGINT.
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2.6.3 PIP_SHOW_MAPS

If PIP_SHOW _MAPS environment is set to “on” and the a signal speci-
fied by the PIP_GDB_SIGNALS is delivered, then the address map (List-
ing 2.4, for example) will be shown.

2.6.4 PIP_SHOW_PIPS

If PIP_SHOW _PIPS environment is set to “on” and the a signal speci-
fied by the PIP_GDB_SIGNALS is delivered, then pips command (Sec-
tion 1.4.4) is invoked to show the status of the other PiP tasks in the same
address space.

2.6.5 PIP_GDB_PATH and PIP_GDB_COMMAND

When PIP_GDB_PATH is set to the path to pip-gdb a signal specified
by the PIP_GDB_SIGNALS is delivered, then PiP gdb (Section 1.4.5)
will be invoked. If the value of the PIP_GDB_COMMAND environment
is set to a valid filename and if the filename contains some GDB commands,
then PiP-gdb will be invoked to work with this command file.

2.7 Malloc routines

Suppose that we are making a producer-consumer style program using PiP,
a PiP task is a producer and another PiP task is a consumer. Unlike the
conventional process model, there is no need of calling IPC (Inter Process
Communication) system call in PiP. All we have to do is just passing pointers
pointing data to be passed from the producer to the consumer.

Here, an issue arises. If the passing data is allocated by a malloc()
routine, then the passed data is free(Ded by the consumer. As described
so far, each PiP task has its own malloc() and free() routines associated
with static variables holding and maintaining a memory pool. The consumer
receives the data allocated from the memory pool of the producer and tries
to free() it when it becomes unnecessary. However, the free() routine
on the consumer has no knowledge about the producer-allocated memory
region and fails (Figure 2.1). I named this situation cross-malloc-free.

I tried this by using the malloc routines provided Glibc and I found that
this works in most cases, not always. I do not know why this works (again,
in most cases) with the Glibc malloc routines, but I believe this situation
must be avoided.

To deal with this, PiP library wraps malloc routines as shown in Ta-
ble 2.1. When a memory region is allocated, the malloc wrapper function
embeds the information who allocates that region. When this region is to be
free(ed, the free() wrapper function connects the region to the freeing
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Figure 2.1: Cross-Malloc-Free Issue
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Figure 2.2: Cross-Malloc-Free with Freeing List

list of the task allocating the region. The regions in the freeing list are even-
tually free()ed when one of the malloc wrapper functions (Figure 2.2).

2.8 XPMEM

As described in Section 1.6, XPMEM is known to provide a shared memory
model which is more convenient that the POSIX shared memory. Again,
the shared address space which PiP provides includes the shared memory
model which XPMEM and POSIX shared memory provide. Thus, the same
functionalities of XPMEM can also be implemented by using PiP.

The PiP library provides the same functions which are provides by
XPMEM. Those who have programs using XPMEM can easily switch to using
PiP. By using PiP, there is no need of installing XPMEM kernel module. Most
importantly, XPMEM functions provided by PiP work much faster than those
of XPMEM. This is because no system call involved to map memory segment
of the other process(es) in PiP. Indeed, most XPMEM functions almost do
nothing since the other processes are already mapped from the beginning in
PiP.
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Chapter 3

PiP Internals

3.1 PiP Implementation

3.1.1 Spawning Tasks

Before PiP version 2.4, PiP tasks were created with the procedure as follows;
1. The spawned program is loaded by calling dlmopen(),
2. Glibc is initialized in the execution context of the loaded program,

3. Call clone() or pthread_create() (chosen by the PIP_MODE en-
vironment setting) to spawn the PiP task,

4. The before hook is called if any, and finally
5. Jump into the starting function.

From PiP version 2.4, the wrapper functions listed in Table 2.1 were in-
troduced. When implementing the wrapper functions, I noticed that wrap-
ping the dlsym() is almost impossible.

A function wrapper is usually implemented as; 1) obtain the wrapping
function address by calling the d1sym() with the RTLD_NEXT argument, 2) do
the wrapping job before and/or after calling the original function. The most
of the Glibc malloc routines has the other weak symbols (malloc() and __
libc_malloc(), for example) and users can call the Glibc malloc routines
without calling d1sym(). If there is no such weak symbol, we cannot create
a wrapper function for dlsym(). How can I wrap a Glibc function without
calling d1sym()?

To solve this issue, I implemented another program, so called 1dpip.so
to load the PiP library and user program. here is the details of new spawning
process;

1. Load 1ldpip.so in the PiP library package by calling dlmopen() and
jump into a function defined inside of it,
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2. The starting function of ldpip.so initializes Glibc,

3. Obtain Glibc function addresses to wrap them later by libpip.so,
4. Load libpip.so by calling dlopen(),

5. Load a user program by calling dlopen(),

6. Call clone() or pthread_create() (chosen by the PIP_MODE en-
vironment setting) to spawn the PiP task,

7. Jump into a function inside of PiP library and initialize the PiP library,
8. The before hook is called if any, and finally

9. Jump into the starting function in the user program.

At the time of loading ldpip.so, no wrapper functions are defined in this
program and obtaining the Glibc function addresses is easy, just referencing
them. After loading the libpip.so and jumping into a function defined in
libpip.so where the wrapping functions are defined, the Glibc functions
to be wrapped are now wrapped by using the function table created by
ldpip.so’.

The Glibc initialization? must be done with the execution context (Sec-
tion 2.5) of the spawned PiP task. In the older version of PiP library, this was
done by; 1) calling d1sym() to the loaded handle, returned by d1 [m] open(),
to obtain the initialization function and then 2) call the function. In the
new implementation, the initialization was done by simply calling the ini-
tialization function from the ldpip.so where the execution context is the
same with that of PiP task.

Thus, by introducing PiP loader program (ldpip.so), things can go in a
simpler way.

3.1.2 Calling clone() System Call

As described in Section refsec:spawn-details, PiP library calls the clone ()
system call with a special flag combination. The clone() system call has
many arguments and some of them are hard to implement, I decided to wrap
the clone () system call to modify only the flag setting.

One issue to wrap the clone () system call is that the clone() is called
not only the PiP library, but also some other libraries (e.g., PThread librray).
A simple function wrapping cannot handle both situations where the flags

'Tf actual dynamic linking would be done in the order of d1 [m]open(), then the wrap-
ping functions in 1ibpip.so would not work as described here. As long as I checked, the
Glibc (1ibc.so) is at the last of the search order of 1d-1linux.so, and this works.

2Calling __ctype_init ()
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needs to be changed when it is called by the PiP library but it should not
change the flag when called by some other libraries.

To solve this issue and protect the clone() system call from being
called from PiP library and from another simultaneously, a special locking
mechanism was implemented by using the test-and-set atomic instruc-
tion. When the PiP library is about to call pthread_create() call, which
eventually calls the clone () system call, it locks by using the test-and-set
instruction with the value of current thread ID (TID). The wrapper function
of the clone firstly tries to lock, but it fails with value of the current TID,
then it is the case of calling from the PiP library. If the lock succeeds, then
it is called by some other library. In the former case, the original clone ()
is called with the modified flags. In the latter case, the clone() is called
with the same argument with the wrapper function call. Needless to say,
the lock is unlocked after returning from the original clone () system call.

3.1.3 Execution Mode in Details

There are two sub-modes in the PiP’s process mode, process:preload and
process:pipclone®. The process:preload mode is implemented by wrap-
ping the clone() function described above and the process:pipclone is
implemented to have another pthread_create () like function implemented
in the patched-glibc (Section 2.2.2). If PiP library is configured to use the
patched-glibc, then process:pipclone is taken, otherwise process:preload
is taken.

3.1.4 Name of PiP Tasks

Some readers may wonder how the pips command (Section 1.4.4) can dis-
tinguish the PiP tasks and the other normal processes and/or threads. In
Linux, each process and thread can have a name, which can be seen by the
top command in the COMMAND column. The PiP library sets the command
name by calling the prctl() system call (in process mode or pthread_
setname_np() call (in pthread mode. The PiP library uses the first two
characters of the name (Table 3.1 and 3.2)).

Table 3.1: Command Name Setting (1st char.)

First char. | Distinction Note
R PiP Root
0..9 PiP Task | the least significant digit of PIPID

3In PiP implementation earlier than version 2.4, there was another mode process:got.
But this becomes obsolete in the newer versions.
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Table 3.2: Command Name Setting (Second char.)

2nd char. | Execution Mode Abbreviation | Note
: process:preload L
; process:pipclone C
. process:got G obsolete
] pthread T

The name may have up to 16 characters and PiP occupies the first two
characters The remaining 14 characters are used for representing original
command name. The abbreviation column in Table 3.2 shows the characters
used by the pip-mode command (Section 1.4.6) to specify the PiP execution
mode. The pips command can now distinguish the normal processes or
threads from the PiP roots and PiP tasks by using those first 2 characters
of the command.

3.2 Remaining Issues

3.2.1 Retrieving Memory

Let us suppose a case where PiP task A pass a pointer to PiP task B (List-
ing 1.8, for example). After then, task A terminates for some reason. What
if task B tries to dereference the pointer to access data which task A had?
This situation can also happen if the string obtained by calling getenv()
is passed to the other task. The consequence of this may introduce diffi-
cult situation hard to debug. This situation must be detected by compilers
and/or tools which are aware of PiP-style execution model.

So, I decided not to reclaim any memory resources when a task termi-
nates, not calling dlclose() nor free(). In the current PiP implementa-
tion, PIPID can be allocated only once. And not releasing memory resource
will not cause further problem.
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Chapter 4

PiP Installation

There are several ways to install PiP listed below;
e Building from source code
e pip-pip command
e Using Spack
It was scheduled to use RPM (yum)and Docker, but they are not avail-
able at the time of this writing.
4.1 Building from Source Code
Usually, building full PiP package consists of the following steps;
1. Building PiP-glibc (optional)
2. Building PiP library
3. Building PiP-gdb (optional)

The 1 and 3 steps are optional, but PiP-gdb requires PiP-glibc. So the
possible combinations are;

e PiP library only
e PiP-glibc and PiP library, and

e PiP-glibc, PiP library and PiP-gdb.

Listing 4.1 shows a typical case of building full set of PiP software pack-
age.
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Listing 4.1: Building from Source Code

$ PIPTOP=$PWD
$ git clone https://github.com/procinproc/PiP-glibc.git

$ mkdir glibc-build

$ pushd glibc-build
$ ../PiP-glibc/build.sh ${PIPTOP}/install

$ popd

$ git clone https://github.com/procinproc/PiP.git

$ pushd PiP

$ ./configure --prefix=${PIPTOP}/install --with-glibc-libdir=${
PIPTOP}/install/1lib

$ make install

$ popd

$ git clone https://github.com/procinproc/PiP-Testsuite.git

$ pushd PiP-Testsuite
$ ./configure --with-pip=${PIPTOP}/install

$ make test

$ popd

$ git clone https://github.com/procinproc/PiP-gdb.git

$ pushd PiP-gdb

$ ./build.sh --prefix=${PIPTOP}/install --with-pip=${PIPTOP}/
install

$ ./test.sh

$ popd

4.2 pip-pip command

The procedure to install full set of PiP package might be cumbersome,
but installing PiP package by using the pip-pip (https://github.com/
procinproc/PiP-pip) command is much easier.

Listing 4.2: PiP-pip installation example

$ git clone https://github.com/procinproc/PiP-pip.git
$ cd PiP-pip
$ ./pip-pip --yes

RedHat/Cent0S: 8
CPU Architecture: x86_64
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List of installations
GITHUB PiP-v2

Prefix dir: ${PWD}/install/x86_64_centos -8_github_pip-2
Work dir: ${PWD}/work/x86_64_centos -8 _github_pip-2
Summary
0K git https://github.com/procinproc/PiP.git@pip-2 ${PWD1}/

install/x86_64_centos—8_github_pip—2

4.3 Using Spack

Spack! is another installation tool designed for the HPC software packages
and PiP can also be installed by using Spack. Listing 4.3 shows the example
of installing PiP (including PiP-glibc)?.

Listing 4.3: Spack installation example

$ git clone https://github.com/spack/spack.git
$ cd bin
$ ./spack install process-in-process

$

"https://spack.io
2Unfortunately, the current version does not install PiP-gdb for some reason.
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miniGhost, miniMD, LULESH2.0 running with PiP-
Shmem and PiP-XPMEM are comparable with those of
POSIX Shmem and XPMEM. PiP is not only a practi-
cal implementation of the shared address space model,
but it also provides opportunities for developing new
optimization techniques, which the paper further elab-
orates on.
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Abstract: In exascale computing era, applications are
executed at larger scale than ever before, which results
in higher requirement of scalability for communica-
tion library design. Message Pass- ing Interface (MPI)
is widely adopted by the parallel application nowa-
days for interprocess communication, and the perfor-
mance of the communication can significantly impact
the overall performance of applications especially at
large scale. There are many aspects of MPI communi-
cation that need to be explored for the maximal mes-
sage rate and network throughput. Considering load
balance, communication load balance is essential for
high-performance applications. Unbalanced communi-
cation can cause severe performance degradation, even
in computation-balanced Bulk Synchronous Parallel
(BSP) applications. MPI communi- cation imbalance
issue is not well investigated like computation load bal-
ance. Since the communication is not fully controlled
by application developers, designing communication-
balanced applications is challenging because of the di-
verse communication implementations at the underly-
ing runtime system. In addition, MPI provides non-
blocking point-to-point and one-sided communica- tion
models where asynchronous progress is required to
guarantee the completion of MPI communications and
achieve better communication and computation over-
lap. Traditional mechanisms either spawn an additional
background thread on each MPI process or launch a
fixed number of helper processes on each node. For
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complex multiphase applications, unfortunately, severe
performance degradation may occur due to dynami-
cally changing communication characteristics. On the
other hand, as the number of CPU cores and nodes
adopted by the ap- plications greatly increases, even
the small message size MPI collectives can result in
the huge communication overhead at large scale if
they are not carefully designed. There are MPI col-
lective algorithms that have been hierarchically de-
signed to saturate inter-node network bandwidth for
the maximal communication performance. Meanwhile,
advanced shared memory techniques such as XPMEM,
KNEM and CMA are adopted to accelerate intra-node
MPI collective communication. Unfortunately, these
studies mainly focus on large-message collective op-
timization which leaves small- and medium-message
MPI collec- tives suboptimal. In addition, they are
not able to achieve the optimal performance due to
the limitations of the shared memory techniques. To
solve these issues, we first present CAB-MPI, an MPI
implementation that can identify idle processes inside
MPI and use these idle resources to dynamically bal-
ance com- munication workload on the node. We de-
sign throughput-optimized strategies to ensure efficient
stealing of the data movement tasks. The experimen-
tal results show the benefits of CAB-MPI through
several internal processes in MPI, including intranode
data transfer, pack/unpack for noncontiguous commu-
nication, and computation in one-sided accumulates
through a set of microbenchmarks and proxy applica-
tions on Intel Xeon and Xeon Phi plat- forms. Then,
we propose a novel Dynamic Asynchronous Progress
Stealing model (Daps) to completely address the asyn-
chronous progress complication; Daps is implemented
inside the MPI runtime, and it dynamically leverages
idle MPI processes to steal communication progress
tasks from other busy computing processes located on
the same node. We compare Daps with state-of-the-
art asynchronous progress approaches by utilizing both
microbench- marks and HPC proxy applications, and
the results show the Daps can outperform the base-
lines and achieve less idleness during asynchronous
communication. Finally, to fur- ther improve MPI col-
lectives performance, we propose Process-in-Process
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based Multiobject Interprocess MPI Collective (PiP-
MColl) design to maximize small and medium-message
MPI collective performance at a large scale. Different
from previous studies, PiP-MColl is designed with ef-
ficient multiple senders and receivers collective algo-
rithms and adopts Process-in-Process shared memory
technique to avoid unnecessary system call and page
fault overhead to achieve the best intra- and inter-node
message rate and throughput. We focus on three widely
used MPT collectives MPI Scatter, MPI Allgather and
MPI Allreduce and apply PiP-MColl to them. Our mi-
crobenchmark and real-world HPC application ex- per-
imental results show PiP-MColl can significantly im-
prove the collective performance at a large scale com-
pared with baseline PiP-MPICH and other widely used
MPI libraries such as OpenMPI, MVAPICH2 and Intel
MPI.
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